
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original Articles

Modelling species habitat suitability from presence-only data using kernel
density estimation

Guiming Zhanga,b, A-Xing Zhuc,d,e,f,b,⁎, Steve K. Windelsg, Cheng-Zhi Qinf,c

a Department of Geography & the Environment, University of Denver, Denver, USA
bDepartment of Geography, University of Wisconsin-Madison, Madison, USA
c Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
d Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Nanjing, China
e State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing, China
f State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing, China
g Voyageurs National Park, National Park Service, International Falls, USA

A R T I C L E I N F O

Keywords:
Habitat suitability modelling and mapping
Presence-only data
Resource availability
Kernel density estimation
Ecological monitoring

A B S T R A C T

We present a novel approach for modelling and mapping habitat suitability from species presence-only data that
is useful for ecosystem and species monitoring. The approach models the relationship between species habitat
suitability and environment conditions using probability distributions of species presence over environmental
factors. Resource availability is an important issue for modelling habitat suitability from presence-only data, but
it is in lack of consideration in many existing methods. Our approach accounts for resource availability by
computing habitat suitability based on the ratio of species presence probability over environmental factors to
background probability of environmental factors in the study area. A case study of modelling and mapping
habitat suitability of the white-tailed deer (Odocoileus virginianus) using presence locations recorded in aerial
surveys at Voyageurs National Park, Minnesota, USA was conducted to demonstrate the approach. Performance
of the approach was evaluated through randomly splitting the presence locations into training data to build the
model and test data to evaluate prediction accuracy of the model (repeated 100 times). Results show that the
approach fit training data well (average training area under the curve AUC=0.792, standard deviation
SD=0.029) and achieved better-than-random prediction accuracy (average test AUC=0.664, SD=0.025) that
is comparable to the state-of-the-art MAXENT method (average training AUC=0.784, SD=0.021; average test
AUC=0.673, SD=0.027). In addition, the suitability-environment responses modelled using our approach are
more amenable to ecological interpretation compared to MAXENT. Compared to modelling habitat suitability
purely based on species presence probability distribution (average training AUC=0.743, SD=0.030; average
test AUC=0.645, SD=0.023), incorporating background distribution to account for resource availability ef-
fectively improved model performance. The proposed approach offers a flexible framework for modelling and
mapping species habitat suitability from species presence-only data. The modelled species-environment re-
sponses and mapped species habitat suitability can be very useful for ecological monitoring at ecosystem or
species level.

1. Introduction

Habitat suitability modelling, also referred to as environmental
niche modelling or species distribution modelling (Franklin and Miller,
2009), is essential to understanding species habitat requirements and
identifying drivers of species distribution (Elith and Leathwick, 2009;
Graham et al., 2004b; Leathwick and Austin, 2001; Mac Nally, 2000).

Habitat suitability mapping is achieved by projecting habitat suitability
models from environmental space to geographic space to predict spatial
variation of species habitat suitability. The resultant habitat suitability
models (i.e., species-environment responses) and habitat suitability
maps can be used to support a wide range of applications such as
ecological monitoring, biodiversity assessment, biological reserve de-
sign, habitat restoration, invasive species management, etc. (Ferrier
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et al., 2002; Lindenmayer and Likens, 2010; Telesco et al., 2007; Thorn
et al., 2009; Thuiller et al., 2005).

The key to habitat suitability modelling and mapping is deriving the
relationships between species habitat suitability and environmental
conditions (i.e., environmental niches) from species data and environ-
mental data (Guisan and Zimmerman, 2000; Hirzel and Lay, 2008;
Warren, 2012). With the rapid development of geospatial technologies
such as geographic information system (GIS) and remote sensing, en-
vironmental data are increasingly available (Gillespie et al., 2008; Kerr
and Ostrovsky, 2003; Viña et al., 2008). According to the different
species data required for deriving the suitability-environment re-
lationships, methods for habitat suitability modelling and mapping fall
into three groups: presence-absence methods, presence-pseudo-absence
methods, and presence-only methods (Elith and Leathwick, 2009).

Presence-absence methods require both species presence and ab-
sence data to derive suitability-environment relationships. Examples
are generalized linear models (GLM), generalized additive models
(GAM) (Guisan et al., 2002), and regression trees (De’Ath, 2002). Pre-
sence-absence data are often collected through well-designed biological
surveys. Thus presence-absence data are usually only available for a
target group of species in small geographic areas (Brooks, 2004;
Pressey, 2004). Even if absence data are available, accuracy of the data
can be problematic. A recorded absence might simply result from the
failure to detect the species, or the habitat was suitable but not acces-
sible for the species. In either case, a recorded absence is not a true
absence of the species (Gu and Swihart, 2004; Hirzel et al., 2002; Li and
Hilbert, 2008).

Presence-pseudo-absence methods use pseudo-absence data (e.g.,
locations randomly selected in the study area) to replace absence data
to train presence-absence models (Elith and Leathwick, 2007; Engler
et al., 2004). However, performance of presence-pseudo-absence
methods are shown to be very sensitive to strategies used to generate
the pseudo-absence data, and there is no consensus of a robust strategy
for generating pseudo-absences (Chefaoui and Lobo, 2008; Hanberry
et al., 2012; Stokland et al., 2011; Wisz and Guisan, 2009).

Presence-only methods require only species presence data to derive
suitability-environment relationships. This group of methods are widely
applied in practice as many biological datasets consist of only species
presence records, such as historical collections from museums and
herbaria (Graham et al., 2004a) and patrol records (Zhang et al.,
2017b). Among existing presence-only methods, envelope-based BIO-
CLIM (Busby, 1991) and HABITAT (Walker and Cocks, 1991) treat
habitat suitability as invariant at locations (in environmental space)
within the environmental envelopes constrained by the outermost
species presences. Thus, they tend to oversimplify the ecological reality
that species habitat suitability may vary even within the environmental
envelopes.

Environmental similarity-based DOMAIN (Carpenter et al., 1993),
EDGM (environmental-distance geometric mean) (Hirzel and Arlettaz,
2003) and LIVES (limiting variable and environmental suitability) (Li
and Hilbert, 2008) compute habitat suitability at a location based on
either the maxim or the geometric mean of the environmental simila-
rities between the location and all known presence locations. En-
vironmental distance-based SVMs (one-class support vector machines)
(Guo et al., 2005) and MDMs (Mahalanobis-distance models) (Farber
and Kadmon, 2003) compute habitat suitability at a location based on
the environmental distance from the location to the center of all known
presence locations. Implicitly, similarity- or distance-based methods
model habitat suitability as a linear function of environment similarity
or distance. Thus, they tend to oversimplify the ecological reality that
species habitat suitability may responds nonlinearly to environmental
gradient.

GARP (genetic algorithm for rule-set production) (Stockwell, 1999)
and MAXENT (maximum entropy) (Phillips et al., 2006) are machine
learning algorithms capable of fitting sophisticated rules or function
relations (e.g., nonlinear) based on species presence data and

background data. GARP and MAXENT can often achieve high predic-
tion accuracy in habitat suitability mapping (Elith et al., 2006). But the
fitted suitability-environment relationships are often implicit, complex
and hard to interpret. GARP and MAXENT are mostly used for pre-
dictive mapping of species habitat suitability but have limited power for
modelling species environmental niches.

ENFA (ecological niche factor analysis) (Hirzel et al., 2002) models
habitat suitability based on frequency distributions of species presence
over ecological niche factors (transformed from original environmental
predictors using a procedure similar to principal component analysis).
ENFA can accommodate nonlinear responses of species habitat suit-
ability to niche factors. But it assumes that the frequency distribution
on each factor must be unimodal and symmetrical. It thus over-
simplifies the ecological reality that frequency distribution of species
presence on niche factors may be multimodal or skewed. Zhu et al.
(2015) models species habitat suitability using species presence prob-
ability distributions over environmental factors without assuming the
unimodality or symmetry of the distributions. However, both ENFA and
Zhu et al. (2015) model habitat suitability purely based on the prob-
ability distribution of species presence over environmental factors
without accounting for background distributions (i.e., probability dis-
tribution of environmental factors in the study area). Neither of them
accounts for the “availability” of resources, which is an important
consideration when modelling habitat suitability from presence-only
data (Boyce et al., 2002; Johnson et al., 2006).

This article presents a novel approach for modelling and mapping
habitat suitability from species presence-only data. The approach
models suitability-environment relationships using probability dis-
tributions of species presence over environmental factors. It imposes no
assumptions on the shape of species suitability-environment relation-
ships. Moreover, it accounts for resource availability by adjusting the
presence probability distributions with background probability dis-
tributions. Details of the approach are presented in Section 2. A case
study of habitat suitability modelling and mapping for the white-tailed
deer (Odocoileus virginianus) at the Voyageurs National Park to de-
monstrate the approach is reported in Section 3. Discussion and con-
clusions are presented in Section 4 and Section 5, respectively.

2. Methodology

2.1. Basic idea

2.1.1. Approximating species environmental niche
The theoretical basis of habitat suitability modelling lies on the

concept of species environmental niche, which characterizes how spe-
cies fitness (habitat suitability) responds to environmental conditions
(Guisan and Zimmerman, 2000; Hirzel and Lay, 2008; Leibold, 1995).
Probability distribution of species presence over environmental gra-
dients is often taken as a natural approximation to species (realized)
environmental niche based on which species habitat suitability is
modeled. For example, ENFA computes species habitat suitability based
on the frequency distribution of species presence over ecological niche
factor axes (Hirzel et al., 2002). MAXENT estimates a probability
density surface of species occurrence (habitat suitability) over pixels in
the study area, with probability density at each pixel related to en-
vironmental conditions at that location (Phillips et al., 2006).

Our approach also uses probability distributions (probability den-
sity functions) of species presence over environmental factors to ap-
proximate species environmental niches and to compute habitat suit-
ability. The approach estimates probability distribution from species
presence-only data in a nonparametric fashion. It imposes no assump-
tions on the shape of the distribution (e.g., unimodality, symmetry), nor
on the form of species suitability-environment relationships (e.g.,
linear, gaussian).
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2.1.2. Accounting for resource availability
It is important to consider the “availability” of resources when

computing habitat suitability from species presence-only data (Boyce
et al., 2002; Johnson et al., 2006). With species presence-only data,
habitat suitability should be measured by the use of resources relative
to resource availability (Johnson et al., 2006). Suppose one species does
not differentiate environmental conditions for habitat use in a study
area and thus occurs randomly over the study area (i.e., equal habitat
suitability everywhere). Variability in the presence probability dis-
tribution over environmental factors would still suggest that the species
prefers certain environmental conditions over others. But in fact, such
variability is an artifact of the probability distribution of available
(nonuniform) environmental conditions in the study area (i.e., back-
ground distribution). It does not reflect species true habitat preference.
However, if the background distribution is accounted for, such artifact
can be avoided. For instance, the ratio of species presence probability to
background probability can be computed. A ratio greater than one
suggests preference of certain environmental condition and a ratio
smaller than one suggests avoidance (Johnson et al., 2006).

Our approach accounts for the “availability” of resources when
computing habitat suitability from species presence-only data. It com-
putes habitat suitability based on the probability distribution of species
presence over environmental factors adjusted by the background
probability distribution (representing resource availability). It assumes
that the adjusted probability density of species presence is an effective
indicator of species habitat suitability: higher adjusted presence prob-
ability density indicates higher habitat suitability.

2.2. Estimating probability distributions

2.2.1. Presence probability distribution over environmental factors
Given species presence locations and GIS data layers characterizing

environmental factors, the probability density function (PDF) of species
presence with respect to individual environmental factors can be esti-
mated from a sample consisting of values of the corresponding en-
vironmental factor at the presence locations. The presence PDF with
respect to individual environmental factors was estimated using kernel
density estimation (KDE), a nonparametric density estimation method
capable of estimating continuous probability density functions
(Silverman, 1986). KDE uses the equation:
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hx is a smoothing parameter for x called bandwidth and it is a
crucial parameter for KDE. A bandwidth that is too large would result in
a “flat” PDF that fails to reflect the variability in data, and one that is
too small would result in a “spiky” PDF that contains too much noise.
The “golden section search optimization procedure” (Brunsdon, 1995)
was adopted to find the optimal bandwidth based on maximum like-
lihood criterion through cross-validation on the sample data. The initial
lower and upper search bounds for the optimal bandwidth were set as

× h0.01 x0 and × h2.0 x0 respectively. Here h x0 is the “rule-of-thumb”
bandwidth (Silverman, 1986) for x determined by:

= −h σ n1.06· ·x x0
1/5 (3)

in which σx is the standard deviation of values of x at presence lo-
cations. Details of the “golden section search optimization procedure”
are beyond the scope of this article and interested readers should refer

to Brunsdon (1995) for full details.
Presence PDF on a categorical environmental factor (e.g., land cover

type) was estimated with the normalized frequency distribution of
species presences over the categories of the factor.

2.2.2. Background distribution of environmental factors
Probability density function of individual environmental factors

over the study area (background distribution) were also estimated using
the KDE method. Different from estimating the presence PDF, the
sample in this case consists of values of the corresponding environ-
mental factor at all locations (pixels) in the study area. Moreover, the
“rule-of-thumb” algorithm (Eq. (3)) was used to determine bandwidth
for estimating background PDF due to two reasons. First, the golden
section search optimization is computationally intensive when sample
size (i.e., number of pixels in the study area) is very large. Second, when
sample size is large, the “rule-of-thumb” algorithm can provide a robust
estimation of the optimal bandwidth for KDE (Jones et al., 1996;
Silverman, 1986).

Background PDF of a categorical environmental factor was esti-
mated with the normalized frequency distribution of the factor in the
study area.

2.3. Modelling and mapping habitat suitability

2.3.1. Accounting for resource availability
Species presence PDF was adjusted using background PDF to ac-

count for resource availability (Section 2.1.2) when computing species
habitat suitability. Specifically, for each individual environmental
factor, the ratio of species presence probability density to the back-
ground probability density was computed:

=f x
f x

f x
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( )

( )ratio
presence

background (4)

where fpresence(x) and fbackground(x) are species presence PDF and
background PDF with respect to environmental factor x respectively,
fratio(x) is the ratio function of the two PDFs. This ratio function values
in [0, +∞) and the value 1 has special meanings. For some value of x,
say x’, fratio(x′)= 1 indicates species habitat use of environmental
condition x’ is purely by chance. Accordingly, fratio(x′) > 1 indicates
preference (more likely than random use) and fratio(x′) < 1 indicates
avoidance (less likely than random use). fratio(x) approximates the en-
vironment niche or resource selection function (Boyce et al., 2002;
Johnson et al., 2006) of the species with respect to environmental factor
x.

2.3.2. Modelling habitat suitability
Species habitat suitability with respect to individual environmental

factors was modelled based on the ratio of species presence probability
density to the background probability density. Habitat suitability often
values within [0, 1] (Guisan et al., 2002; Hirzel et al., 2002; Phillips
et al., 2006). The ratio of species presence probability density to
background probability density on environmental factors values in [0,
+∞). The following equation was used to transform the ratio to
compute a habitat suitability value that is has an upper limit of 1.0
regarding environmental factor x:

=
+ −S x

e
( ) 1

1 f x1 ( )ratio (5)

where S(x) is species habitat suitability with respect to environmental
factor x. fratio(x) is the ratio function computed using Eq. (4).

This transformation (Eq. (5)) has an important property that it
maintains the correspondence between ratio value 1 and suitability
value 0.5. For some value of x, say x′, S(x′)= 0.5 if fratio(x′)= 1. Thus, a
suitability value 0.5 indicates species habitat use of environmental
condition x’ is purely by chance. A suitability value greater than 0.5
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indicates habitat preference and a suitability value less than 0.5 in-
dicates avoidance. It should be noted that S(x)= 0.269 when
fratio(x)= 0 (Fig. 1). Thus, the modelled suitability is in fact bounded
within [0.269, 1) instead of [0, 1]. The authors are aware that an ideal
transformation is expected to have a second property that it maintains
the correspondence between ratio value 0 and suitability value 0 (i.e.,
complete avoidance in habitat use). But an elegant transformation si-
multaneously maintaining the above two properties was not found
(although it is mathematically possible to stretch suitability values in
[0.269, 0.5) to [0, 0.5), such a manipulation would introduce extra
complexity and inconsistency). Nevertheless, the transformation
adopted here is an acceptable compromise as maintaining the indicative
meaning of suitability value 0.5 (i.e., differentiate habitat preference vs.
avoidance) is a more desirable property when modelling habitat suit-
ability from presence-only data.

The overall habitat suitability considering all environmental factors
involved was computed by aggregating suitability values with respect
to individual environmental factors. Many habitat suitability modelling
methods adopt the “weighted average” strategy to determine the

overall effects of environmental factors on species habitat suitability
(Guisan et al., 2002; Hirzel et al., 2002; Phillips et al., 2006). Here the
“weighted average” strategy was also followed to determine the overall
habitat suitability:
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where S(x1, x2, xj, …, xm) is the overall habitat suitability, xj is the
jth environmental factor, m is the total number of environmental factors
involved, S(xj) is the habitat suitability with respect to xj, and wj is a
weight on xj. Here all environmental factors were equally weighted by
1/m. Alternatively, the “limiting factor” strategy can be adopted to
determine the overall habitat suitability. Readers are deferred to
Section 4.2 for comparisons between the two aggregation strategies.
The overall habitat suitability is bounded within [0.269, 1).

2.3.3. Mapping habitat suitability
A habitat suitability map of the study area was predicted by com-

puting habitat suitability at each location (pixel) in the study area.
Values of environmental factors at a location were first extracted from
the GIS data layers characterizing environmental factors. Habitat suit-
ability at that location was then computed by following Eqs. (5) and (6).

3. Case study

3.1. Study area

The study area is Voyageurs National Park (VNP) (48°18′–48°38′N,
92°27′–93°11.5′W) in northern Minnesota, along the United States-
Canada border. VNP has a total area of approximately 828 km2 of which
about forty percent are lakes and other open waters (Fig. 2). The to-
pography is generally flat with maximum relief of 80–90m (Gogan
et al., 1997). In addition to white-tailed deer (Odocoileus virginianus),
other large mammals occurring within the park are moose (Alces alces),
gray wolf (Canis lupus), black bear (Ursus americanus), lynx (Felis ca-
nadensis), and bobcat (Felis rufus). White-tailed deer and moose are the
only two extant ungulates in the park. Moose are more limited in their
distribution in the park than deer (Cobb et al., 2004; Windels and
Olson, 2017). Where they do overlap in space and cover type use, they
do not generally compete for food as they have different foraging pre-
ferences, especially in winter (Cobb et al., 2004). Gray wolves are the
main predators of white-tailed deer year-round, while black bears, lynx,

Fig. 1. Modelling habitat suitability based on the ratio of species presence
probability density to background probability density on an environmental
factor.

Fig. 2. Deer presence locations recorded during aerial surveys conducted in Voyageurs National Park, MN, USA, January 2009.
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and bobcats generally only prey on deer fawns in the early summer
(Gogan et al., 2004). White-tailed deer densities were estimated to be
between 3.0 and 6.4 deer/km2 in 2009 based on winter fecal pellet
counts (Gable et al., 2017).

3.2. Deer presence locations

Presence locations of the white-tailed deer in VNP were recorded
during aerial surveys conducted in January 2009 in conjunction with a
moose population survey (Gable et al., 2017). The park was delineated
into 33 survey units, ranging in area from 9.8 km2 to 27.0 km2 (Gogan
et al., 1997; Windels, 2014). All 33 survey units were surveyed in 2009.
A pilot and 3 observers searched for white-tailed deer using a de Ha-
villand Beaver aircraft, flying at airspeeds between 125–145 km per
hour and an altitude of 150–215m. Survey units were sampled by
flying west-east transects spaced at 0.536 km intervals at an intensity of
about 1.5 min per km2. Locations of observed deer were plotted on
topographic maps with reference to features on the topographic maps
and on high-resolution aerial photos (hills, valleys, lakes, wetlands,
roads, etc.). Sex composition, age and group size of each moose or deer
sighting were recorded on datasheets. Estimated positioning accuracy
of the recorded locations was about 50m.

A total of 140 deer presence locations were recorded during the
surveys. 17 of the 140 presence locations were plotted within water
bodies close to lake shores because in the winter deer often travel along
the edges of frozen lakes where the snow is less deep and travel is ea-
sier. These deer presence locations were excluded from analysis. The
remaining 123 deer presence locations were used for modelling and
mapping deer habitat suitability in the park (Fig. 2).

3.3. Environmental data

Environmental data representing topography, snow depth, and ve-
getation community were obtained to characterize the environmental
factors that influence deer habitat suitability in winter. These factors
play important roles in determining the mobility, thermal condition,
and food availability for deer in winter (Bolvar-Ciḿ and Gallina, 2012;
Moen, 1976; Ozoga and Gysel, 1972; Ozoga and Verme, 1970). For
example, in the winter deer tend to prefer areas with less snowpack to
improve travel efficiency (Ozoga and Gysel, 1972). Deer also prefer to

stay on leeward sides of slopes to reduce exposure to wind to better
maintain body temperature (Moen, 1976). Topography has an impact
on the distribution of snow accumulation primarily as it influences the
amount of solar radiation reaching the surface. Vegetation communities
provide thermal cover, escape cover from predators, and forage for deer
in winter (Cobb et al., 2004; Ozoga and Gysel, 1972; Ozoga and Verme,
1970).

A digital elevation model (DEM) at 30m resolution of VNP was
obtained from the National Elevation Dataset (Gesch et al., 2002)
provided by the United States Geological Survey (USGS). The DEM was
resampled to 90m resolution with the bilinear method in ArcMap
(ESRI, 2013) to accommodate the positioning accuracy of deer presence
locations (∼50m). Elevation, tangent of slope (steepness), sine of aspect
(eastness), and cosine of aspect (northness) were derived from the DEM
in ArcMap to represent topographic factors. A land cover type map of
2006 at 30m resolution was obtained from the National Land Cover
Database provided by USGS (Fry et al., 2011). The land cover map was
resampled to 90m resolution with the majority method to match the
spatial resolution of other environmental data layers. Daily snow depth
estimation at 1 km resolution of VNP was obtained from the Snow Data
Assimilation System Data Products provided by the National Oceanic
and Atmospheric Administration (NOAA) (NOHRSC, 2004). The daily
snow depth raster data layers in January 2009 were averaged to com-
pute an average snow depth raster. The Ordinary Kriging method in
ArcMap was adopted to interpolate the average snow depth raster at 1-
km resolution to 90-m resolution.

In total, five continuous environmental factors and one categorical
environmental factor (i.e., land cover type) were used for modelling
and mapping deer habitat suitability (pixels falling into water bodies
were excluded). The correlation amongst the five continuous environ-
mental factors were rather weak (Table 1). The highest correlation was
found between elevation and tangent of slope (Pearson’s r=0.283) and
between tangent of slope and snow depth (Pearson’s r=0.142). The weak
correlations across the environmental factors suggests that each se-
lected environmental factor characterizes a relatively unique aspect of
the environmental conditions.

3.4. Habitat suitability modelling

3.4.1. Suitability-environment relationships
The proposed approach was applied on the deer presence data and

environmental data to model and map winter deer habitat suitability in
VNP. Fig. 3 shows the relationships between deer habitat suitability and
environmental factors using slope factor as an example. Obviously, our
approach does not impose any assumptions on the shape of the suit-
ability-environment relationships (e.g., linear, gaussian, symmetrical).

The presence PDF suggests that deer mostly preferred slopes around
2.9° (whose tangent= 0.05) (Fig. 3a). But such an observation is
questionable without accounting for availability of the factor itself in
the study area. With the background PDF accounted for, the ratio of the
presence PDF to the background PDF clearly reveals that the deer

Table 1
Pearson’s correlation coefficients amongst the five continuous environmental
factors.

Elevation Tangent
slope

Sine
aspect

Cosine
aspect

Snow depth

Elevation 1.000 0.283 0.018 −0.032 −0.071
Tangent slope 1.000 0.037 −0.001 0.142
Sine aspect 1.000 0.024 −0.014
Cosine aspect 1.000 0.022
Snow depth 1.000

Fig. 3. The relationship between deer habitat suitability and environmental factors illustrated with the slope factor. (a) Presence PDF and background PDF on slope.
(b) Ratio of presence PDF to background PDF. (c) Suitability-slope relationship.
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preferred slopes around 12.4° (whose tangent= 0.22) more than slopes
around 2.9° (Fig. 3b). The suitability-slope relationship, characterizing
how deer habitat suitability responds to slope conditions (Fig. 3c), can
be readily interpreted as the realized environmental niche or resource
selection function of the deer in winter.

3.4.2. Habitat suitability map
Fig. 4 shows the predicted winter deer habitat suitability map in

VNP. Large patches of high suitability areas were in the central parts of
the park. Smaller patches of relatively high suitability areas were also in
the northwestern and southeastern parts of the park. Results generally
conform to known distribution of white-tailed deer in the park in winter
(Gable et al., 2017; Vanderwaal et al., 2015).

3.5. Evaluation

3.5.1. Performance of the approach
Performance of the proposed approach was evaluated by evenly

splitting the 123 presence locations at random into a training set and a
test set. Presence locations in the training set (61 locations) were used
to predict a habitat suitability map and compute its training accuracy.
Presence locations in the test set (62 locations) was used to compute the
test accuracy of the suitability map. The above procedures (random
split, prediction, evaluation) were repeated 100 times.

The area under the ROC (receiver operating characteristic) curve
(AUC) was adopted as an accuracy measure of the predicted suitability
map. AUC can be computed for a suitability map given species presence
locations (positive) and background locations chosen uniformly at
random from the study area (negative) (Phillips and Dudík, 2008).
5000 locations were randomly sampled from the VNP study area and
were used as background locations for computing AUC. A ROC curve is
obtained by plotting all true positive fraction values on the y axis
against their equivalent false positive fraction for all available suit-
ability thresholds on the x axis (Fielding and Bell, 1997). The AUC is the
probability that the predicted suitability at a randomly chosen presence
location will be higher than that at a randomly chosen background
location (Phillips et al., 2006). The AUC ranges from 0.5 to 1.0. A value
of 0.5 indicates that the prediction is no better than random predic-
tions. A value of 1.0 indicates perfect model performance. But with
presence-only test data the maximum achievable AUC is less than 1.0
(Wiley et al., 2003). AUC provides a single accuracy measure that is
independent of any choice of threshold.

Running the proposed approach on the 100 random splits, the
average training AUC was 0.792 (standard deviation, SD=0.029), in-
dicating that the approach can fit training data fairly well. The average
test AUC was 0.664 (SD=0.025), suggesting that the approach
achieved better-than-random prediction performance.

3.5.2. Comparison against MAXENT
Performance of the proposed approach was compared against the

MAXENT method (Phillips et al., 2006). MAXENT was used as a
benchmark because it is the state-of-the-art and most widely used
presence-only method and it generally achieves good performance
(Elith et al., 2006; Elith and Graham, 2009). Also, default parameter
values of MAXENT were fine-tuned using a large data set and thus users
are relieved from the difficulty of tweaking model parameters (Phillips
and Dudík, 2008). The MAXENT software (version 3.3.3 k) with its
default parameter settings was used in this study.

The habitat suitability map predicted using MAXENT with the 123
deer presence data is shown in Fig. 5. Noticeably, this map shows a
spatial distribution pattern of winter deer habitat suitability that is very
similar to the suitability map predicted using our approach (Fig. 4):
patches of relatively high suitability areas were in the central, north-
western and southeastern parts of the park.

Running MAXENT on the 100 random splits, the average training
AUC was 0.784 (SD=0.021) and the average test AUC was 0.673
(SD=0.027). The average training AUC of our approach was sig-
nificantly higher than MAXENT (paired t-test, t=3.632, p < 0.001).
The average test AUC of our approach was significantly lower than
MAXENT (paired t-test, t=−3.829, p < 0.001), though only by 0.009
units. Overall, our approach achieved performance that is comparable
to MAXENT. But compared to the prediction-oriented MAXENT, one
strength of our approach is that the modelled suitability-environment
responses are more amenable to ecological interpretation (Section
3.4.1).

4. Discussion

4.1. Effects of accounting for resource availability

We anticipated that the proposed approach, which models habitat
suitability using the presence PDF adjusted by background PDF to ac-
count for resource availability, should perform better than modelling
habitat suitability purely based on the presence PDF. To investigate the

Fig. 4. Habitat suitability map of white-tailed deer in winter in Voyaguers National Park, MN, USA, predicted using our approach.
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effectiveness of accounting for resource availability, the proposed ap-
proach was compared against a variant that models habitat suitability
by simply normalizing the presence PDF:

′ =S x
f x

f x
( )

( )

max( ( ))
presence

presence (7)

where S′(x) is species habitat suitability with respect to environ-
mental factor x, fpresence(x) is the presence PDF, and max(fpresence(x)) is
the maximum density value of the presence PDF. S’(x) is bounded
within [0, 1]. In the variant approach, Eq. (7) was used to compute
habitat suitability with respect to individual environmental factors
(replacing Eq. (5)). The overall habitat suitability was computed using
Eq. (6).

Running this variant approach on the 100 random splits, the
average training AUC was 0.743 (SD=0.030) and the average test AUC
was 0.645 (SD=0.023). The average training AUC was significantly
lower than the original approach (paired t-test, t=−36.875,
p < 0.001). The average test AUC was also significantly lower than the
original approach (paired t-test, t=−7.501, p < 0.001). The average
training AUC and test AUC of the original approach were 0.049 and
0.020 units higher than the variant approach, which suggests that ac-
counting for resource availability did effectively improve model per-
formance.

4.2. Impact of the aggregation strategy

The “weighted average” strategy was adopted to aggregate suit-
ability values with respect to individual environmental factors to de-
termine the overall habitat suitability (Eq. (6)). Many habitat suitability
modelling methods adopt this strategy to aggregate the effects of en-
vironmental factors on species habitat suitability, for example GLM
(Guisan et al., 2002), ENFA (Hirzel et al., 2002) and MAXENT (Phillips
et al., 2006). The “weighted average” strategy implicitly assumes that
the ecological effect of one environmental factor on species can be
compensated by other factors. An alternative aggregation strategy is the
“limiting factor” strategy adopted by some other habitat suitability
modelling methods (Li and Hilbert, 2008; Zhang et al., 2017a; Zhu
et al., 2015). The “limiting factor” strategy assumes that the ecological
effect of one environmental factor on species is indispensable and thus
cannot be compensated by other factors.

To investigate the impact of the aggregation strategy, the proposed
approach was compared against a variant that computes the overall

habitat suitability following the “limiting factor” aggregation strategy.
The variant approach takes the minimum amongst the suitability values
to individual environmental factors as the overall habitat suitability:

′ … = = …S x x x x w S x( , , , , ) min ( )j m
j m j

j1 2
1,2, , (8)

In the variant approach, Eq. (8) replaces Eq. (6) to compute the
overall habitat suitability (environmental factors were equally
weighted by 1). Habitat suitability with respect to individual environ-
mental factors was computed using Eq. (5).

Running this variant approach on the 100 random splits, the
average training AUC was 0.775 (SD=0.034) and the average test AUC
was 0.615 (SD=0.038). The average training AUC was significantly
lower than that of the original approach (paired t-test, t=−8.484,
p < 0.001). The average test AUC was also significantly lower than the
original approach (paired t-test, t=−14.757, p < 0.001). The average
training AUC and test AUC of the original approach were 0.017 and
0.049 higher than the variant approach, which indicates that adopting
the “weighted average” aggregation strategy achieved better model
performance.

4.3. Impact of environmental factors

Environmental factors used for modelling deer habitat suitability
were primarily determined based on domain knowledge of the ecology
of the species in the study area (Section 3.3). The selection of en-
vironmental factors may affect model performance. Experiments were
conducted on subsets of the full set of six environmental factors to in-
vestigate such effects. One subset of environmental factors was ob-
tained by excluding elevation, tangent of slope, sine and cosine of aspect,
snow depth, or land cover type from the six environmental factors (five
subsets in total; each consists of five environmental factors). Results of
running the proposed KDE approach and MAXENT on the 100 random
splits using each of the above subsets of environmental factors were
shown in Table 2.

Compared to performance of the two approaches on the full set of
environmental factors (KDE: average training AUC=0.792, test
AUC=0.664; MAXENT: average training AUC=0.784, test
AUC=0.673), the average training AUCs achieved on the subsets of
environmental factors are consistently lower (paired t-test, p < 0.001).
The average test AUCs achieved on most subsets are also lower (paired t-
test, p < 0.001) except that the average test AUC is higher on the
subset where sine and cosine of aspect were excluded (paired t-test,

Fig. 5. Habitat suitability map of white-tailed deer in winter in Voyaguers National Park, MN, USA predicted using MAXENT.
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p < 0.005). We also experimented with subsets of environmental fac-
tors excluding sine and cosine of aspect and other factors but found that
model performance consistently degrades (compared to model perfor-
mance on the subset of environmental factors excluding sine and cosine
of aspect). In general, using subsets of the environmental factors de-
grades model performance. It is thus recommended using environ-
mental factors identified based on domain knowledge as a starting point
for habitat suitability modelling.

4.4. Advantages of the approach

The proposed kernel density estimation approach offers a very
flexible framework for modelling and mapping species habitat suit-
ability from species presence-only data. To begin with, both quantitative
(continuous) and qualitative (categorical) environmental factors can be
used naturally in this approach. In many other habitat suitability
modelling methods, a categorical factor is either converted to binary
factors (MAXENT, Phillips et al., 2006) or replaced by quantitative
factors derived from the original categorical factor (ENFA, Hirzel et al.,
2002).

Second, our approach accounts for resource availability in modelling
habitat suitability. Resource availability is an important consideration
when modelling species habitat suitability from presence-only data
(Section 2.1) but is in lack of consideration in many other methods
(e.g., ENFA, Hirzel et al., 2002). The case study shows that accounting
for resource availability did effectively improve model performance.

Third, our approach is a nonparametric approach that does not
impose any assumptions on the shape of species suitability-environment
responses. Compared to other methods (e.g., ENFA), our approach
provides flexibility for habitat suitability modelling on species whose
suitability-environment responses do not follow a presumed unimodal
and symmetrical shape. In addition, the modelled suitability-environ-
ment responses approximate species environmental niches or species
resource selection functions (Boyce et al., 2002; Johnson et al., 2006)
and thus are amenable to ecological interpretation. This is a strength of
our approach compared to other prediction-oriented modelling
methods (e.g., MAXENT).

Fourth, our approach is flexible to incorporate environmental factor
importance when modeling habitat suitability. By default, environ-
mental factors are assumed equally important to species habitat suit-
ability and are equally weighted (Eq. (6)). But if knowledge about the
relative importance of different factors is available, varying weights can
be assigned on environmental factors in our approach to model species
habitat suitability.

Finally, sample selection bias is a common issue for species pre-
sence-only data (Phillips, 2008; Phillips et al., 2009). Within the fra-
mework of our approach, mechanisms of correcting for sample selection
bias can be easily implemented. For example, in estimating species
presence PDF over environmental factors, presence locations can be
weighted by sampling effort to compensate for bias in species presence
data (Zhu et al., 2015).

4.5. Applicability of the approach for ecological monitoring

Understanding species distribution and environmental niches is
crucial to many ecosystem and species management efforts, and eco-
logical monitoring programs have been widely established to support
such missions (Lindenmayer and Likens, 2010). Species presence-only
data are collected and accumulated in many monitoring programs. Our
approach is well suited for analyzing this kind of species data. The re-
sultant species-environment responses and species habitat suitability
maps in turn can be useful for ecosystem and species monitoring and for
supporting management decision making.

5. Conclusions

This article presents a novel approach for modelling and mapping
habitat suitability from species presence-only data. The approach
models the relationship between species habitat suitability and en-
vironmental conditions using probability distributions of species pre-
sence over environmental factors. It accounts for resource availability
by adjusting species presence probability distribution with background
probability distribution. The probability distributions were estimated
using nonparametric kernel density estimation and thus the approach
imposes no assumptions on the shape of species suitability-environment
relationships (e.g., linear, gaussian, unimodality, symmetry). Besides,
the suitability-environment relationships be readily interpreted as
species realized environmental niches or resource selection functions.

The case study of modelling and mapping winter habitat suitability
for white-tailed deer at Voyageurs National Park demonstrated that the
approach achieved good model performance. It fit training data fairly
well and achieved better-than-random prediction that is comparable to
the state-of-the-art MAXENT method. In addition, the suitability-en-
vironment responses modelled using our approach are more amenable
to ecological interpretation compared to MAXENT. Experimental results
also suggest that accounting for resource availability effectively im-
proved performance of the approach. The approach offers a flexible
framework for modelling and mapping species habitat suitability from
species presence-only data. The resultant species-environment re-
sponses and species habitat suitability maps can be very useful for
ecosystem and species monitoring and for supporting management
decision making.
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